On the equivalence of cyclic and quasi-cyclic codes over finite fields
Author(s) -
Kenza Guenda,
T. Aaron Gulliver
Publication year - 2017
Publication title -
journal of algebra combinatorics discrete structures and applications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.137
H-Index - 1
ISSN - 2148-838X
DOI - 10.13069/jacodesmath.327375
Subject(s) - cyclic code , huffman coding , mathematics , cyclic group , combinatorics , discrete mathematics , equivalence (formal languages) , prime (order theory) , linear code , block code , algorithm , decoding methods , data compression , abelian group
This paper studies the equivalence problem for cyclic codes of length $p^r$ and quasi-cyclic codes of length $p^rl$. In particular, we generalize the results of Huffman, Job, and Pless (J. Combin. Theory. A, 62, 183--215, 1993), who considered the special case $p^2$. This is achieved by explicitly giving the permutations by which two cyclic codes of prime power length are equivalent. This allows us to obtain an algorithm which solves the problem of equivalency for cyclic codes of length $p^r$ in polynomial time. Further, we characterize the set by which two quasi-cyclic codes of length $p^rl$ can be equivalent, and prove that the affine group is one of its subsets.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom