z-logo
open-access-imgOpen Access
Maximal induced paths and minimal percolating sets in hypercubes
Author(s) -
Anil M. Shende
Publication year - 2015
Publication title -
journal of algebra combinatorics discrete structures and applications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.137
H-Index - 1
ISSN - 2148-838X
DOI - 10.13069/jacodesmath.15518
Subject(s) - hypercube , combinatorics , mathematics , discrete mathematics
For a graph $G$, the \emph{$r$-bootstrap percolation} process can be described as follows: Start with an initial set $A$ of "infected'' vertices. Infect any vertex with at least $r$ infected neighbours, and continue this process until no new vertices can be infected. $A$ is said to \emph{percolate in $G$} if eventually all the vertices of $G$ are infected. $A$ is a \emph{minimal percolating set} in $G$ if $A$ percolates in $G$ and no proper subset of $A$ percolates in $G$. An induced path, $P$, in a hypercube $Q_n$ is maximal if no induced path in $Q_n$ properly contains $P$. Induced paths in hypercubes are also called snakes. We study the relationship between maximal snakes and minimal percolating sets (under 2-bootstrap percolation) in hypercubes. In particular, we show that every maximal snake contains a minimal percolating set, and that every minimal percolating set is contained in a maximal snake.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom