Water depletion: An improved metric for incorporating seasonal and dry-year water scarcity into water risk assessments
Author(s) -
Kate A. Brauman,
Brian D. Richter,
Sandra Postel,
Marcus Malsy,
Martina Flörke
Publication year - 2016
Publication title -
elementa science of the anthropocene
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.011
H-Index - 34
ISSN - 2325-1026
DOI - 10.12952/journal.elementa.000083
Subject(s) - water scarcity , environmental science , water resource management , hydrology (agriculture) , water resources , water use , ecology , biology , geology , geotechnical engineering
We present an improved water-scarcity metric we call water depletion, calculated as the fraction of renewable water consumptively used for human activities. We employ new data from the WaterGAP3 integrated global water resources model to illustrate water depletion for 15,091 watersheds worldwide, constituting 90% of total land area. Our analysis illustrates that moderate water depletion at an annual time scale is better characterized as high depletion at a monthly time scale and we are thus able to integrate seasonal and dry-year depletion into the water depletion metric, providing a more accurate depiction of water shortage that could affect irrigated agriculture, urban water supply, and freshwater ecosystems. Applying the metric, we find that the 2% of watersheds that are more than 75% depleted on an average annual basis are home to 15% of global irrigated area and 4% of large cities. An additional 30% of watersheds are depleted by more than 75% seasonally or in dry years. In total, 71% of world irrigated area and 47% of large cities are characterized as experiencing at least periodic water shortage.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom