z-logo
open-access-imgOpen Access
The influence of light and water mass on bacterial population dynamics in the Amundsen Sea Polynya
Author(s) -
Inga Richert,
Julie Dinasquet,
Ramiro Logares,
Lasse Riemann,
Patricia L. Yager,
Annelie Wendeberg,
Stefan Bertilsson
Publication year - 2015
Publication title -
elementa science of the anthropocene
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.011
H-Index - 34
ISSN - 2325-1026
DOI - 10.12952/journal.elementa.000044
Subject(s) - pelagic zone , mesopelagic zone , oceanography , bacterioplankton , phytoplankton , ecology , population , environmental science , sea ice , microcosm , community structure , water column , biogeochemical cycle , biology , nutrient , geology , demography , sociology
Despite being perpetually cold, seasonally ice-covered and dark, the coastal Southern Ocean is highly productive and harbors a diverse microbiota. During the austral summer, ice-free coastal patches (or polynyas) form, exposing pelagic organisms to sunlight, triggering intense phytoplankton blooms. This strong seasonality is likely to influence bacterioplankton community composition (BCC). For the most part, we do not fully understand the environmental drivers controlling high-latitude BCC and the biogeochemical cycles they mediate. In this study, the Amundsen Sea Polynya was used as a model system to investigate important environmental factors that shape the coastal Southern Ocean microbiota. Population dynamics in terms of occurrence and activity of abundant taxa was studied in both environmental samples and microcosm experiments by using 454 pyrosequencing of 16S rRNA genes. We found that the BCC in the photic epipelagic zone had low richness, with dominant bacterial populations being related to taxa known to benefit from high organic carbon and nutrient loads (copiotrophs). In contrast, the BCC in deeper mesopelagic water masses had higher richness, featuring taxa known to benefit from low organic carbon and nutrient loads (oligotrophs). Incubation experiments indicated that direct impacts of light and competition for organic nutrients are two important factors shaping BCC in the Amundsen Sea Polynya.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom