z-logo
open-access-imgOpen Access
Bio-Mineralization of Organophosphorous Insecticide-Chlorpyrifos and its Hydrolyzed Product 3,5,6-Trichloro-2-Pyridinol by Staphylococcus Sp. ES-2
Author(s) -
M. Supreeth,
N. S. Raju
Publication year - 2016
Publication title -
current world environment
Language(s) - English
Resource type - Journals
eISSN - 2320-8031
pISSN - 0973-4929
DOI - 10.12944/cwe.11.2.17
Subject(s) - chlorpyrifos , mineralization (soil science) , chemistry , pesticide , environmental chemistry , hydrolysis , incubation , food science , toxicology , chromatography , biochemistry , biology , organic chemistry , agronomy , nitrogen
Application of Chlorpyrifos on agricultural fields to protect crops against pests results in accumulation of it in soil and other environmental samples. The insecticide transform into 3,5,6Trichloro-2-Pyridinol (TCP) through hydrolysis in soil, which has got antimicrobial property and hence resists its degradation in natural condition. In the current findings, a bacterial isolate capable of mineralizing Chlorpyrifos without accumulation of TCP was isolated from agricultural soil by enrichment method. Based on Morphological, Biochemical Characterization and with Bergey’s Manual comparision, the isolate was identified as Staphylococcus sp. The isolate was found to metabolize chlorpyrifos completely in Mineral salt medium with chlorpyrifos as the sole carbon source. No metabolites of chlorpyrifos were detected in Liquid Chromatography-Mass Spectroscopy (LC-MS) analysis after 7 days of incubation. The novelty of the outcome of the experiment relies on Staphylococcus sp.ES-2 in complete mineralization of chlorpyrifos which can be used as a potential bioaugmenting agent in the chlorpyrifos contaminated sites.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom