z-logo
open-access-imgOpen Access
A maximum entropy classification scheme for phishing detection using parsimonious features
Author(s) -
Emmanuel Oluwatobi Asani,
Adebayo Omotosho,
Paul Danquah,
Joyce Ayoola,
Peace Ayegba,
O. G. Longe
Publication year - 2021
Publication title -
telkomnika
Language(s) - English
Resource type - Journals
eISSN - 2302-9293
pISSN - 1693-6930
DOI - 10.12928/telkomnika.v19i5.15981
Subject(s) - phishing , naive bayes classifier , support vector machine , computer science , feature vector , entropy (arrow of time) , artificial intelligence , confidentiality , principle of maximum entropy , machine learning , data mining , pattern recognition (psychology) , computer security , the internet , world wide web , physics , quantum mechanics

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here