Graded Associations of Blood Lead and Urinary Cadmium Concentrations with Oxidative-Stress–Related Markers in the U.S. Population: Results from the Third National Health and Nutrition Examination Survey
Author(s) -
DukHee Lee,
Ji-Sun Lim,
Kyungeun Song,
Yong Chool Boo,
David R. Jacobs
Publication year - 2005
Publication title -
environmental health perspectives
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.257
H-Index - 282
eISSN - 1552-9924
pISSN - 0091-6765
DOI - 10.1289/ehp.8518
Subject(s) - national health and nutrition examination survey , cadmium , physiology , oxidative stress , medicine , population , urinary system , urine , vitamin , body mass index , ascorbic acid , endocrinology , environmental health , chemistry , food science , organic chemistry
Although oxidative stress has been proposed as a mechanism of lead and cadmium toxicity mostly based on in vitro experiments or animal studies, it is uncertain whether this mechanism is relevant in the pathogenesis of lead- or cadmium-related diseases in the general population with low environmental exposure to lead and cadmium. We examined associations of blood lead and urinary cadmium levels with oxidative stress markers of serum gamma-glutamyltransferase (GGT), vitamin C, carotenoids, and vitamin E among 10,098 adult participants in the third U.S. National Health and Nutrition Examination Survey. After adjusting for race, sex, and age (plus serum total cholesterol in the case of serum carotenoids and vitamin E), blood lead and urinary cadmium levels both showed graded associations, positive with serum GGT and inverse with serum vitamin C, carotenoids, and vitamin E (p for trend < 0.01, respectively). These associations were consistently observed among most subgroups: non-Hispanic white, non-Hispanic black, men, women, all age groups, nondrinkers, drinkers, nonsmokers, ex-smokers, current smokers, and body mass index (< 25, 25-29.9, and > or = 30). The strong association of blood lead and urinary cadmium levels with oxidative stress markers in this population suggests that oxidative stress should be considered in the pathogenesis of lead- and cadmium-related diseases even among people with low environmental exposure to lead and cadmium.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom