
In vitro toxicity and transformation potency of nickel compounds.
Author(s) -
Karen S. Hansen,
Richard M. Stern
Publication year - 1983
Publication title -
environmental health perspectives
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.257
H-Index - 282
eISSN - 1552-9924
pISSN - 0091-6765
DOI - 10.1289/ehp.8351223
Subject(s) - toxicity , potency , bioassay , in vitro , carcinogen , nickel , chemistry , transformation (genetics) , toxicology , environmental chemistry , pharmacology , metal toxicity , intracellular , chelation , metal , nickel compounds , biochemistry , biology , organic chemistry , genetics , gene
An in vitro bioassay utilizing BHK-21 cells in culture is used to determine the relative transformation potential of a number of nickel compounds including, as relatively insoluble particulates a known carcinogen (Ni3S2) and several oxides either of commercial interest or found in the working environment in the metal industry (e.g., NiO), and a soluble salt [Ni(CH3COO)2]. Although a wide range of transformation potency is found as a function of the dose of Ni per area of culture, all substances produce the same number of transformed colonies at the same degree of toxicity (e.g., 50% survival). If toxicity is a direct measure of intracellular concentration, then apparently nickel per se is the ultimate transforming agent independent of source or uptake mechanism.