z-logo
open-access-imgOpen Access
Discovery of Novel Biomarkers by Microarray Analysis of Peripheral Blood Mononuclear Cell Gene Expression in Benzene-Exposed Workers
Author(s) -
Matthew S. Forrest,
Qing Lan,
Alan Hubbard,
Luoping Zhang,
Roel Vermeulen,
Xin Zhao,
Guilan Li,
Yen-Ying Wu,
Minxue Shen,
Songnian Yin,
Stephen J. Chanock,
Nathaniel Rothman,
Martyn T. Smith
Publication year - 2005
Publication title -
environmental health perspectives
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.257
H-Index - 282
eISSN - 1552-9924
pISSN - 0091-6765
DOI - 10.1289/ehp.7635
Subject(s) - peripheral blood mononuclear cell , gene expression , microarray , biology , microarray analysis techniques , gene , dna microarray , gene chip analysis , population , microbiology and biotechnology , immunology , genetics , medicine , in vitro , environmental health
Benzene is an industrial chemical and component of gasoline that is an established cause of leukemia. To better understand the risk benzene poses, we examined the effect of benzene exposure on peripheral blood mononuclear cell (PBMC) gene expression in a population of shoe-factory workers with well-characterized occupational exposures using microarrays and real-time polymerase chain reaction (PCR). PBMC RNA was stabilized in the field and analyzed using a comprehensive human array, the U133A/B Affymetrix GeneChip set. A matched analysis of six exposed-control pairs was performed. A combination of robust multiarray analysis and ordering of genes using paired t-statistics, along with bootstrapping to control for a 5% familywise error rate, was used to identify differentially expressed genes in a global analysis. This resulted in a set of 29 known genes being identified that were highly likely to be differentially expressed. We also repeated these analyses on a smaller subset of 508 cytokine probe sets and found that the expression of 19 known cytokine genes was significantly different between the exposed and the control subjects. Six genes were selected for confirmation by real-time PCR, and of these, CXCL16, ZNF331, JUN, and PF4 were the most significantly affected by benzene exposure, a finding that was confirmed in a larger data set from 28 subjects. The altered expression was not caused by changes in the makeup of the PBMC fraction. Thus, microarray analysis along with real-time PCR confirmation reveals that altered expressions of CXCL16, ZNF331, JUN, and PF4 are potential biomarkers of benzene exposure.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom