Understanding the Spatial Clustering of Severe Acute Respiratory Syndrome (SARS) in Hong Kong
Author(s) -
PC Lai,
C.M. Wong,
A. J. Hedley,
S. V. Lo,
Pak-Yin Leung,
James H.B. Kong,
GM Leung
Publication year - 2004
Publication title -
environmental health perspectives
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.257
H-Index - 282
eISSN - 1552-9924
pISSN - 0091-6765
DOI - 10.1289/ehp.7117
Subject(s) - outbreak , geospatial analysis , geography , cartography , geographic information system , infectious disease (medical specialty) , medicine , disease , demography , pathology , sociology
We applied cartographic and geostatistical methods in analyzing the patterns of disease spread during the 2003 severe acute respiratory syndrome (SARS) outbreak in Hong Kong using geographic information system (GIS) technology. We analyzed an integrated database that contained clinical and personal details on all 1,755 patients confirmed to have SARS from 15 February to 22 June 2003. Elementary mapping of disease occurrences in space and time simultaneously revealed the geographic extent of spread throughout the territory. Statistical surfaces created by the kernel method confirmed that SARS cases were highly clustered and identified distinct disease "hot spots." Contextual analysis of mean and standard deviation of different density classes indicated that the period from day 1 (18 February) through day 16 (6 March) was the prodrome of the epidemic, whereas days 86 (15 May) to 106 (4 June) marked the declining phase of the outbreak. Origin-and-destination plots showed the directional bias and radius of spread of superspreading events. Integration of GIS technology into routine field epidemiologic surveillance can offer a real-time quantitative method for identifying and tracking the geospatial spread of infectious diseases, as our experience with SARS has demonstrated.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom