Ambient endotoxin concentrations in PM10 from Southern California.
Author(s) -
Linda Mueller-Anneling,
Ed Avol,
John M. Peters,
Peter S. Thorne
Publication year - 2004
Publication title -
environmental health perspectives
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.257
H-Index - 282
eISSN - 1552-9924
pISSN - 0091-6765
DOI - 10.1289/ehp.6552
Subject(s) - aerodynamic diameter , particulates , geometric mean , ozone , zoology , nitrogen dioxide , air pollution , environmental science , pollutant , air pollutants , environmental chemistry , toxicology , chemistry , biology , statistics , mathematics , organic chemistry
Concentrations of endotoxin in urban air pollution have not previously been extensively characterized. We measured 24-hr levels of PM10 (particulate matter < 10 microm in aerodynamic diameter) and the associated endotoxin component once every 6 weeks for 1 year in 13 communities in Southern California. All the samples collected had detectable PM10 and endotoxin levels. The geometric mean PM10 was 34.6 microg/m3 [geometric SD (GSD), 2.1; range, 3.0-135]. By volume, the endotoxin geometric mean was 0.44 endotoxin units (EU)/m3 (GSD, 3.1; range, 0.03-5.44). Per unit material collected, the geometric mean of endotoxin collected was 13.6 EU/mg (GSD, 3.2; range, 0.7-96.8). No correlation was found between endotoxin concentrations and other ambient pollutants concurrently measured [ozone, nitrogen dioxide, total acids, or PM2.5 (particulate matter < 2.5 micro m in aerodynamic diameter]. PM10 and endotoxin concentrations were significantly correlated, most strongly in summer. Samples collected in more rural and agricultural areas had lower PM10 and mid-range endotoxin levels. The high desert and mountain communities had lower PM10 levels but endotoxin levels comparable with or higher than the rural agricultural sites. By volume, endotoxin levels were highest at sites downwind of Los Angeles, California, which were also the locations of highest PM10. Endotoxin concentrations measured in this study were all < 5.5 EU/m3, which is lower than recognized thresholds for acute adverse health effects for occupational exposures but in the same range as indoor household concentrations. This study provides the first extensive characterization of endotoxin concentration across a large metropolitan area in relation to PM10 and other pollutant monitoring, and supports the need for studies of the role of endotoxin in childhood asthma in urban settings.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom