z-logo
open-access-imgOpen Access
Developmental neurotoxicity elicited by gestational exposure to chlorpyrifos: when is adenylyl cyclase a target?
Author(s) -
Armando Meyer,
Frederic J. Seidler,
Mandy M Cousins,
Theodore A. Slotkin
Publication year - 2003
Publication title -
environmental health perspectives
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.257
H-Index - 282
eISSN - 1552-9924
pISSN - 0091-6765
DOI - 10.1289/ehp.6468
Subject(s) - adenylyl cyclase , forskolin , neurotoxicity , medicine , endocrinology , signal transduction , chemistry , stimulation , biology , pharmacology , toxicity , biochemistry
The developmental neurotoxicity of chlorpyrifos (CPF) involves mechanisms over and above cholinesterase inhibition. In the present study, we evaluated the effects of gestational CPF exposure on the adenylyl cyclase (AC) signaling cascade, which regulates the production of cyclic AMP, a major controller of cell replication and differentiation. In addition to basal AC activity, we assessed the AC response to direct enzymatic stimulants [forskolin, manganese (Mn(2+))]; the response to isoproterenol, which activates signaling through beta-adrenoceptors (betaARs); and the concentration of betaAR binding sites. CPF administered to pregnant rats on gestational days (GD) 9-12 elicited little or no change in any components of AC activity or betaARs. However, shifting the treatment window to GD17-20 produced regionally selective augmentation of AC activity. In the brainstem, the response to forskolin or Mn(2+) was markedly stimulated by doses at or below the threshold for observable toxicity of CPF or for inhibition of fetal brain cholinesterase, whereas comparable effects were seen in the forebrain only at higher doses. In addition, low doses of CPF reduced betaAR binding without impairing receptor-mediated stimulation of AC. These results indicate that signal transduction through the AC cascade is a target for CPF during a discrete developmental period in late gestation, an effect that is likely to contribute to the noncholinergic component of CPF's developmental neurotoxicity.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom