z-logo
open-access-imgOpen Access
Association of expired nitric oxide with occupational particulate exposure.
Author(s) -
Jee Young Kim,
M. P. Wand,
Russ Hauser,
Sutapa Mukherjee,
Robert F. Herrick,
David C. Christiani
Publication year - 2002
Publication title -
environmental health perspectives
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.257
H-Index - 282
eISSN - 1552-9924
pISSN - 0091-6765
DOI - 10.1289/ehp.5880
Subject(s) - particulates , confidence interval , aerodynamic diameter , zoology , inhalation exposure , medicine , inhalation , nitric oxide , toxicology , chemistry , anesthesia , biology , organic chemistry
Particulate air pollution has been associated with adverse respiratory health effects. This study assessed the utility of expired nitric oxide to detect acute airway responses to metal-containing fine particulates. Using a repeated-measures study design, we investigated the association between the fractional concentration of expired nitric oxide (F(E)NO) and exposure to particulate matter with an aerodynamic mass median diameter of less than or equal to 2.5 micro m (PM(2.5)) in boilermakers exposed to residual oil fly ash and metal fumes. Subjects were monitored for 5 days during boiler repair overhauls in 1999 (n = 20) or 2000 (n = 14). The Wilcoxon median baseline F(E)NO was 10.6 ppb [95% confidence interval (CI): 9.1, 12.7] in 1999 and 7.4 ppb (95% CI: 6.7, 8.0) in 2000. The Wilcoxon median PM(2.5) 8-hr time-weighted average was 0.56 mg/m(3) (95% CI: 0.37, 0.93) in 1999 and 0.86 mg/m(3) (95% CI: 0.65, 1.07) in 2000. F(E)NO levels during the work week were significantly lower than baseline F(E)NO in 1999 (p < 0.001). A significant inverse exposure-response relationship between log-transformed F(E)NO and the previous workday's PM(2.5) concentration was found in 1999, after adjusting for smoking status, age, and sampling year. With each 1 mg/m(3) incremental increase in PM(2.5) exposure, log F(E)NO decreased by 0.24 (95% CI: -0.38, -0.10) in 1999. The lack of an exposure-response relationship between PM(2.5) exposure and F(E)NO in 2000 could be attributable to exposure misclassification resulting from the use of respirators. In conclusion, occupational exposure to metal-containing fine particulates was associated with significant decreases in F(E)NO in a survey of workers with limited respirator usage.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom