The Hurwicz Decision Rule’s Relationship to Decision Making with the Triangle and Beta Distributions and Exponential Utility
Author(s) -
Sarat Sivaprasad,
Cameron A. MacKenzie
Publication year - 2018
Publication title -
decision analysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.527
H-Index - 22
eISSN - 1545-8504
pISSN - 1545-8490
DOI - 10.1287/deca.2018.0368
Subject(s) - subjective expected utility , admissible decision rule , mathematical economics , decision rule , expected utility hypothesis , exponential function , mathematics , decision theory , decision analysis , econometrics , weighted sum model , statistics , influence diagram , mathematical analysis
Nonprobabilistic approaches to decision making have been proposed for situations in which an individual does not have enough information to assess probabilities over an uncertainty. One nonprobabilistic method is to use intervals in which an uncertainty has a minimum and maximum but nothing is assumed about the relative likelihood of any value in the interval. The Hurwicz decision rule in which a parameter trades off between pessimism and optimism generalizes the current rules for making decisions with intervals. This article analyzes the relationship between intervals based on the Hurwicz rule and traditional decision analysis using a few probability distributions and an exponential utility function. This article shows that the Hurwicz decision rule for an interval is logically equivalent to i an expected value decision with a triangle distribution over the interval; ii an expected value decision with a beta distribution; and iii an expected utility decision with constant absolute risk aversion with a uniform distribution. These probability distributions are not exhaustive. There are likely other distributions and utility functions for which equivalence with the Hurwicz decision rule can also be established. Since a frequent reason for the use intervals is that intervals assume less information than a probability distribution, the results in this article call into question whether decision making based on intervals really assumes less information than subjective expected utility decision making.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom