Molecular Cloning and Expression inPichia pastorisof aIrpex lacteusExo-β-(1→3)-galactanase Gene
Author(s) -
Toshihisa Kotake,
Kiminari Kitazawa,
Ryohei Takata,
Kohei Okabe,
Hitomi Ichinose,
Satoshi Kaneko,
Yoichi Tsumuraya
Publication year - 2009
Publication title -
bioscience biotechnology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 116
eISSN - 1347-6947
pISSN - 0916-8451
DOI - 10.1271/bbb.90433
Subject(s) - pichia pastoris , galactan , arabinogalactan , biochemistry , pichia , gene , molecular mass , chemistry , cloning (programming) , hydrolysis , enzyme , recombinant dna , biology , polysaccharide , computer science , programming language
A gene encoding exo-beta-(1-->3)-galactanase from Irpex lacteus was cloned by reverse transcriptase-PCR. The deduced amino acid sequence showed high similarity with exo-beta-(1-->3)-galactanases from other sources. The molecular mass of the mature form was calculated to be 45,520 Da. The gene product expressed in Pichia pastoris specifically hydrolyzed beta-(1-->3)-galactooligosaccharides, as did other exo-beta-(1-->3)-galactanases. The recombinant enzyme showed high activity toward arabinogalactan-proteins (AGPs) from radish as well as beta-(1-->3)-galactan. Product analysis revealed that the enzyme released beta-(1-->6)-galactobiose, beta-(1-->6)-galactotriose, and alpha-L-arabinofuranosyl-(1-->3)-beta-galactosyl-(1-->6)-galactose together with Gal from beta-(1-->3)-galactans attached with and without beta-(1-->6)-galactosyl branches prepared from acacia gum. These results indicate that the exo-beta-(1-->3)-galactanase from I. lacteus efficiently hydrolyzes beta-(1-->3)-galactan main chains of AGPs by bypassing beta-(1-->6)-galactosyl side chains.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom