Genetic Engineering ofCandida utilisYeast for Efficient Production ofL -Lactic Acid
Author(s) -
Shigehito Ikushima,
Toshio Fujii,
Osamu Kobayashi,
Satoshi Yoshida,
Aruto Yoshida
Publication year - 2009
Publication title -
bioscience biotechnology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 116
eISSN - 1347-6947
pISSN - 0916-8451
DOI - 10.1271/bbb.90186
Subject(s) - lactic acid , polylactic acid , yeast , lactate dehydrogenase , biology , mutant , biochemistry , strain (injury) , metabolic engineering , pyruvate decarboxylase , gene , ethanol , food science , chemistry , enzyme , bacteria , genetics , alcohol dehydrogenase , organic chemistry , anatomy , polymer
Polylactic acid is receiving increasing attention as a renewable alternative for conventional petroleum-based plastics. In the present study, we constructed a metabolically-engineered Candida utilis strain that produces L-lactic acid with the highest efficiency yet reported in yeasts. Initially, the gene encoding pyruvate decarboxylase (CuPDC1) was identified, followed by four CuPDC1 disruption events in order to obtain a null mutant that produced little ethanol (a by-product of L-lactic acid). Two copies of the L-lactate dehydrogenase (L-LDH) gene derived from Bos taurus under the control of the CuPDC1 promoter were then integrated into the genome of the CuPdc1-null deletant. The resulting strain produced 103.3 g/l of L-lactic acid from 108.7 g/l of glucose in 33 h, representing a 95.1% conversion. The maximum production rate of L-lactic acid was 4.9 g/l/h. The optical purity of the L-lactic acid was found to be more than 99.9% e.e.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom