Enzymatic Synthesis of 4-Hydroxyphenyl β-D -Oligoxylosides and Their Notable Tyrosinase Inhibitory Activity
Author(s) -
Kazuhiro Chiku,
Hirofumi Dohi,
Akihiro Saito,
Hiroki Ebise,
Yusuke Kouzai,
Hirofumi Shinoyama,
Yoshihiro Nishida,
Akikazu Ando
Publication year - 2009
Publication title -
bioscience biotechnology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 116
eISSN - 1347-6947
pISSN - 0916-8451
DOI - 10.1271/bbb.80885
Subject(s) - tyrosinase , arbutin , enzyme , chemistry , ic50 , hydroquinone , enzyme kinetics , stereochemistry , escherichia coli , enzyme assay , biochemistry , microbiology and biotechnology , active site , biology , in vitro , gene
We have purified and characterized an oligoxylosyl transfer enzyme (OxtA) from Bacillus sp. strain KT12. In the present study, a N-terminally His-tagged recombinant form of the enzyme, OxtA(H)(E), was overproduced in Escherichia coli and applied to the reaction with xylan and hydroquinone to produce 4-hydroxyphenyl beta-D-oligoxylosides, beta-(Xyl)(n)-HQ (n=1-4), by one step reaction. The obtained beta-(Xyl)(n)-HQ inhibited mushroom tyrosinase, which catalyzes the oxidation of L-DOPA to L-DOPA quinine, and the IC(50) values of beta-Xyl-HQ, beta-(Xyl)(2)-HQ, beta-(Xyl)(3)-HQ, and beta-(Xyl)(4)-HQ were 3.0, 0.74, 0.48, and 0.18 mM respectively. beta-(Xyl)(4)-HQ showed 35-fold more potent inhibitory activity than beta-arbutin (4-hydroxyphenyl beta-D-glucopyranoside), of which the IC(50) value was measured to be 6.3 mM. Kinetic analysis revealed that beta-(Xyl)(2)-HQ, beta-(Xyl)(3)-HQ, and beta-(Xyl)(4)-HQ competitively inhibited the enzyme, and the corresponding K(i) values were calculated to be 0.20, 0.29, and 0.057 mM respectively.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom