z-logo
open-access-imgOpen Access
Molecular Basis of Methanol-Inducible Gene Expression and Its Application in the Methylotrophic YeastCandida boidinii
Author(s) -
Hiroya Yurimoto
Publication year - 2009
Publication title -
bioscience biotechnology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 116
eISSN - 1347-6947
pISSN - 0916-8451
DOI - 10.1271/bbb.80825
Subject(s) - pichia pastoris , yeast , biology , gene , biochemistry , methanol , heterologous expression , gene expression , pichia , promoter , enzyme , chemistry , recombinant dna , organic chemistry
Methanol is a promising feedstock for biotechnological and chemical processes as well as a primary source of energy to replace coal and petroleum. Methylotrophic yeasts, that can utilize methanol as the sole source of carbon and energy, have been studied intensively in terms of both physiological activities and potential applications. During growth on methanol, the enzymes involved in methanol metabolism are massively produced in these yeasts, indicating that the gene promoters of these enzymes are strong methanol-inducible promoters. Using these promoters, high-level heterologous gene expression systems have been developed in several methylotrophic yeast strains, such as Pichia pastoris, Hansenula polymorpha, and Candida boidinii. To achieve efficient industrial use of methanol and efficient protein production by methylotrophic yeasts, it is important to elucidate the molecular basis of methanol-inducible gene expression in these yeasts. This review describes recent advances in understanding of the regulation of methanol-inducible gene expression and the molecular mechanism of transcriptional activation in the methylotrophic yeast C. boidinii. Application of this gained knowledge led to successful production of useful enzymes in this yeast, which is also reviewed.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom