z-logo
open-access-imgOpen Access
Analysis of the Regulation of Target Genes by anArabidopsisHeat Shock Transcription Factor, HsfA2
Author(s) -
Ayako NishizawaYokoi,
Eriko Yoshida,
Yukinori Yabuta,
Shigeru Shigeoka
Publication year - 2009
Publication title -
bioscience biotechnology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 116
eISSN - 1347-6947
pISSN - 0916-8451
DOI - 10.1271/bbb.80809
Subject(s) - arabidopsis , heat shock factor , heat shock protein , transcription factor , reporter gene , microbiology and biotechnology , gus reporter system , promoter , gene , biology , chemistry , gene expression , hsp70 , genetics , mutant
We have isolated a high-light and heat-shock inducible gene, Arabidopsis heat shock transcription factor (HsfA2), which induces expression of various types of target gene such as heat shock protein 18.2-CI (Hsp18.1-CI), galactinol synthase 1 (GolS1), and Bcl-2-associated athanogene 6 (Bag6). Here we investigated the regulatory system of target genes operating via HsfA2. A transient reporter assay using a luciferase reporter construct with different fragments of the Hsp18.1-CI, the GolS1, or the Bag6 promoter showed that two modules of a TATA-proximal heat shock element (HSE) are essential for transcriptional activation by HsfA2. Electrophoretic mobility shift assay demonstrated that the increase in protein complex formation onto the HSE was markedly suppressed during high-light stress and recovery from the stress in knockout HsfA2 plants. HsfA2 appears to function not only in the triggering of response to environmental stress, but also in the amplification of the signal in the response.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom