Production of Human Monoclonal Antibodies against FcεRIα by a Method Combiningin VitroImmunization with Phage Display
Author(s) -
Kosuke Tomimatsu,
Shinei Matsumoto,
Makiko Yamashita,
Kiichiro Teruya,
Yoshinori Katakura,
Shigeru Kabayama,
Sanetaka Shirahata
Publication year - 2009
Publication title -
bioscience biotechnology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 116
eISSN - 1347-6947
pISSN - 0916-8451
DOI - 10.1271/bbb.80640
Subject(s) - monoclonal antibody , immunization , in vitro , virology , antibody , phage display , biology , immunology , genetics
An in vitro immunization protocol using human peripheral blood mononuclear cells (PBMC) was developed to generate human antigen-specific antibodies. Monoclonal antibodies have great potential, and in particular, efficient acquirement of monoclonal antibodies against membrane proteins provides advantages. In this study, we tried to generate a human monoclonal antibody against the high affinity IgE receptor, Fc(epsilon)RI(alpha), using a method combining in vitro immunization and phage display. Heavy and light chain variable region genes were obtained from PBMC immunized in vitro with Fc(epsilon)RI(alpha)-expressed KU812F cells. Subsequently a combined phage antibody library 6 x 10(3) in the size was generated. Antigen-specific phage antibody clones were selected by panning with recombinant Fc(epsilon)RI(alpha) and recombined to produce human IgG format antibodies using CHO cells. The antibodies exhibited specific binding against Fc(epsilon)RI(alpha). These results suggest that one can obtain membrane protein-specific human monoclonal antibodies from a relatively small phage antibody library using in vitro immunized PBMCs.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom