z-logo
open-access-imgOpen Access
The Metabolism and Distribution of Docosapentaenoic Acid (n-6) in the Liver and Testis of Growing Rats
Author(s) -
Phyllis S. Y. Tam,
Rumi Sawada,
Yan Cui,
Akiyo Matsumoto,
Yoko Fujiwara
Publication year - 2008
Publication title -
bioscience biotechnology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 116
eISSN - 1347-6947
pISSN - 0916-8451
DOI - 10.1271/bbb.80249
Subject(s) - docosapentaenoic acid , docosahexaenoic acid , weaning , endocrinology , medicine , metabolism , arachidonic acid , biology , linoleic acid , fatty acid , polyunsaturated fatty acid , zoology , chemistry , biochemistry , enzyme
To investigate the metabolism and distribution of docosapentaenoic acid (22:5n-6, DPA) in the liver and testis of growing rats, 22:5n-6 was administered to their dams. Newborn rats with a low hepatic arachidonic acid (20:4n-6, AA) level were generated by administrating a diet rich in docosahexaenoic acid (22:6n-3, DHA) but n-6 fatty acid (FA) free to pregnant dams. After parturition, 22:5n-6 or linoleic acid (18:2n-6, LA) was administered with a high level of 22:6n-3 to the dams until weaning. At weaning, the hepatic 20:4n-6 level was significantly highest in the DPA-DHA but not LA-DHA diet-fed animals. The hepatic delta-6 desaturase (D6D) mRNA abundance was significantly lower in both the LA-DHA and DPA-DHA diet-fed animals, connoted with the 20:4n-6 content recovered by 22:5n-6 that did not involve D6D and supporting the occurrence of retroconversion in the liver of the growing rats. The low D6D level in the 3-week-old testis was not in proportion to the elevated 22:5n-6 level, implying that early testicular 22:5n-6 accumulation might require supply from the circulation system.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom