Relationship between Protein Composition and Coagulation Reactivity, Particulate Formation, and Incorporation of Lipids in Soymilk
Author(s) -
Kyoko Toda,
Kazuhiro Yagasaki,
Koji Takahashi
Publication year - 2008
Publication title -
bioscience biotechnology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 116
eISSN - 1347-6947
pISSN - 0916-8451
DOI - 10.1271/bbb.80217
Subject(s) - chemistry , chromatography , composition (language) , coagulation , centrifugation , sodium , sodium dodecyl sulfate , gel electrophoresis , food science , biochemistry , organic chemistry , psychology , philosophy , linguistics , psychiatry
Many studies have suggested that the 11S/7S ratio in soybeans affects the coagulation reaction at the first step. In this study, the 11S/7S ratio in soybeans showed significantly negative correlation with MgCl(2) concentrations for the maximum breaking stress of tofu for six Japanese varieties. To determine the effect of the 11S/7S ratio, soymilk was fractionated by centrifugation after the addition of MgCl(2), and the distribution of lipids and proteins was studied. The amount of precipitate increased as the MgCl(2) concentration or the 11S/7S ratio increased. More triglyceride was incorporated into the precipitate as the MgCl(2) concentration or the 11S/7S ratio increased. The stain intensity of bands after sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) indicated that the ratio of oleosin, a membrane protein of the oil body, increased in the precipitate as the MgCl(2) concentration or the 11S/7S ratio increased, while the ratios of glycinin and beta-conglycinin were less variable. These results indicate that the 11S/7S ratio and coagulant concentration may have an effect on the amount of coagulum and the concentration of oil globules in the coagulum at the beginning of coagulation.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom