Purification and Characterization of a Novel Exo-β-1,3-1,6-glucanase from the Fruiting Body of the Edible Mushroom Enoki (Flammulina velutipes)
Author(s) -
Kenji Fukuda,
Michika HIRAGA,
Sadaki Asakuma,
Ikichi Arai,
Mitsuo Sekikawa,
Tadasu Urashima
Publication year - 2008
Publication title -
bioscience biotechnology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 116
eISSN - 1347-6947
pISSN - 0916-8451
DOI - 10.1271/bbb.80213
Subject(s) - flammulina , laminarin , cell wall , mushroom , glucanase , chemistry , glucan , enzyme , polysaccharide , biochemistry , cellulase , food science
To elucidate the role of beta-glucanases in the cell-wall degradation involved in morphogenesis, an exo-beta-1,3-1,6-glucanase (FvBGL1) was purified from fruiting bodies of the edible mushroom Enoki (Flammulina velutipes), and its enzymatic properties were studied. At least three beta-glucanases were detected in the crude extract by zymogram assay when 1% laminarin was used as substrate. The molecular mass of FvBGL1 was estimated by SDS-PAGE to be 80 kDa. The optimum pH and temperature for the action of FvBGL1 were 6.1 and 60 degrees C respectively. FvBGL1 was completely inactivated by 1 mM mercuric ions. FvBGL1 hydrolyzed F. velutipes cell-wall beta-glucan as well as beta-1,3- and beta-1,6-glucans from various sources with glucose as the only reaction product. Transglucosylation was observed when the enzyme acted on laminarinonaose. FvBGL1 can be assumed to degrade F. velutipes cell-wall beta-1,3-glucan, but most probably acts more efficiently in concert with other endogenous beta-glucan degrading enzymes.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom