z-logo
open-access-imgOpen Access
Hyperhomocysteinemia Induced by Guanidinoacetic Acid Is Effectively Suppressed by Choline and Betaine in Rats
Author(s) -
Minoru Setoue,
Seiya OHUCHI,
Tatsuya Morita,
Kimio SUGIYAMA
Publication year - 2008
Publication title -
bioscience biotechnology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 116
eISSN - 1347-6947
pISSN - 0916-8451
DOI - 10.1271/bbb.70791
Subject(s) - betaine , choline , hyperhomocysteinemia , homocysteine , methionine , chemistry , endocrinology , medicine , biochemistry , amino acid , biology
Rats were fed 25% casein (25C) diets differing in choline levels (0-0.5%) with and without 0.5% guanidinoacetic acid (GAA) or 0.75% L-methionine for 7 d to determine the effects of dietary choline level on experimental hyperhomocysteinemia. The effects of dietary choline (0.30%) and betaine (0.34%) on GAA- and methionine-induced hyperhomocysteinemia were also compared. Dietary choline suppressed hyperhomocysteinemia induced by GAA, but not by methionine, in a dose-dependent manner. GAA-induced enhancement of the plasma homocysteine concentration was suppressed by choline and betaine to the same degree, but the effects of these compounds were relatively small on methionine-induced hyperhomocysteinemia. Dietary supplementation with choline and betaine significantly increased the hepatic betaine concentration in rats fed a GAA diet, but not in rats fed a methionine diet. These results indicate that choline and betaine are effective at relatively low levels in reducing plasma homocysteine, especially under the condition of betaine deficiency without a loading of homocysteine precursor.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom