z-logo
open-access-imgOpen Access
Characterization of Food Physical Properties by the Mastication Parameters Measured by Electromyography of the Jaw-Closing Muscles and Mandibular Kinematics in Young Adults
Author(s) -
Kaoru Kohyama,
Tomoko Sasaki,
Fumiyo Hayakawa
Publication year - 2008
Publication title -
bioscience biotechnology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 116
eISSN - 1347-6947
pISSN - 0916-8451
DOI - 10.1271/bbb.70769
Subject(s) - mastication , masticatory force , electromyography , kinematics , orthodontics , bite force quotient , mandible (arthropod mouthpart) , dentistry , medicine , physical medicine and rehabilitation , biology , physics , genus , botany , classical mechanics
The relationship between the physical properties of solid food and the masticatory parameters is clarified. Eight solid foods of varying physical properties were chosen. Electromyography of the jaw-closing muscles and mandibular kinematics in eleven young subjects were recorded. The masticatory parameters were derived from the recorded data for the entire mastication process, for the first bite, and in the early, middle, and late stages of mastication. After calculating values relative to the mean value for each subject, nine parameters representing each group were chosen through a cluster analysis. Three principal components were extracted, each of them related to the masticatory time and cycle, minimum jaw opening at the early stage of mastication, and masticatory force. The principal component scores for each food were different, except for one combination in which the physical properties under large and extra-large deformations were similar, despite different breaking properties or small deformation properties. The masticatory parameters did not correlate with the physical properties of food measured for small deformation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom