Kinetic Studies ofMicrococcus luteusB-P 26 Undecaprenyl Diphosphate Synthase Reaction Using 3-Desmethyl Allylic Substrate Analogs
Author(s) -
Keitaro Fujikura,
Yuji Maki,
Norimasa Ohya,
Mikiya Satoh,
Tanetoshi Koyama
Publication year - 2008
Publication title -
bioscience biotechnology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 116
eISSN - 1347-6947
pISSN - 0916-8451
DOI - 10.1271/bbb.70723
Subject(s) - allylic rearrangement , farnesyl diphosphate synthase , micrococcus luteus , chemistry , stereochemistry , prenylation , substrate (aquarium) , atp synthase , desmethyl , enzyme , biochemistry , biology , catalysis , ecology , escherichia coli , gene , metabolite
In order to investigate the substrate binding feature of undecaprenyl diphosphate synthase from Micrococcus luteus B-P 26 with respect to farnesyl diphosphate and a reaction intermediate, (Z,E,E)-geranylgeranyl diphosphate, we examined the reactivity of artificial substrate analogs, 3-desmethyl farnesyl diphosphate and 3-desmethyl Z-geranylgeranyl diphosphate, which lack the methyl group at the 3-position of farnesyl diphosphate and Z-geranylgeranyl diphosphate, respectively. Undecaprenyl diphosphate synthase did not accept either of the 3-desmethyl analogs as the allylic substrate, indicating that the methyl group at the 3-position of the allylic substrate is important in the undecaprenyl diphosphate synthase reaction. These analogs showed different inhibition patterns in the cis-prenyl chain elongation reaction with respect to the reactions of farnesyl diphosphate and Z-geranylgeranyl diphosphate as allylic substrate. These results suggest that the binding site for the natural substrate farnesyl diphosphate and those for the intermediate allylic diphosphate, which contains the cis-prenyl unit, are different during the cis-prenyl chain elongation reaction.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom