Purification and Characterization of Chitinase A ofStreptomyces cyaneusSP-27: An Enzyme Participates in Protoplast Formation fromSchizophyllum communeMycelia
Author(s) -
Shigekazu Yano,
Nopakarn Rattanakit,
Arata Honda,
Yuta NODA,
Mamoru Wakayama,
Abhinya Plikomol,
Takashi Tachiki
Publication year - 2008
Publication title -
bioscience biotechnology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 116
eISSN - 1347-6947
pISSN - 0916-8451
DOI - 10.1271/bbb.70343
Subject(s) - chitinase , schizophyllum commune , mycelium , streptomyces , protoplast , biology , enzyme , microbiology and biotechnology , streptomycetaceae , actinomycetales , botany , biochemistry , genetics , bacteria
A culture filtrate of Bacillus circulans KA-304 grown on a cell-wall preparation of Schizophyllum commune has an activity to form protoplasts from S. commune mycelia. alpha-1,3-Glucanase and chitinase I, which were isolated from the filtrate, did not form the protoplast by itself while a mixture of them showed protoplast-forming activity. Streptomyces cyaneus SP-27 was isolated based on the productivity of chitinase. The culture filtrate of S. cyaneus SP-27 did not form S. commune protoplasts, but addition of it to alpha-1,3-glucanase of B. circulans KA-304 brought about protoplast-forming activity. Chitinase A isolated from the S. cyaneus SP-27 culture filtrate was more effective than chitinase I of B. circulans KA-304 for the protoplast formation in combination with alpha-1,3-glucanase. The N-terminal amino acid sequence of chitinase A (MW 29,000) has a sequential similarity to those of several Streptomycete family 19 chitinases. Chitinase A adsorbed to chitinous substrate and inhibited the growth of Trichoderma reesei mycelia. Anomer analysis of the reaction products also suggested that the enzyme is a family 19 chitinase.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom