z-logo
open-access-imgOpen Access
Sterol Biosynthesis by a Prokaryote: Firstin VitroIdentification of the Genes Encoding Squalene Epoxidase and Lanosterol Synthase fromMethylococcus capsulatus
Author(s) -
Chiaki Nakano,
Akihiro MOTEGI,
Tsutomu Sato,
Masayuki Onodera,
Tsutomu Hoshino
Publication year - 2007
Publication title -
bioscience biotechnology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 116
eISSN - 1347-6947
pISSN - 0916-8451
DOI - 10.1271/bbb.70331
Subject(s) - squalene monooxygenase , lanosterol , squalene , biochemistry , atp synthase , enzyme , biosynthesis , biology , sterol , prokaryote , gene , escherichia coli , chemistry , cholesterol
Sterol biosynthesis by prokaryotic organisms is very rare. Squalene epoxidase and lanosterol synthase are prerequisite to cyclic sterol biosynthesis. These two enzymes, from the methanotrophic bacterium Methylococcus capsulatus, were functionally expressed in Escherichia coli. Structural analyses of the enzymatic products indicated that the reactions proceeded in a complete regio- and stereospecific fashion to afford (3S)-2,3-oxidosqualene from squalene and lanosterol from (3S)-2,3-oxidosqualene, in full accordance with those of eukaryotes. However, our result obtained with the putative lanosterol synthase was inconsistent with a previous report that the prokaryote accepts both (3R)- and (3S)-2,3-oxidosqualenes to afford 3-epi-lanosterol and lanosterol, respectively. This is the first report demonstrating the existence of the genes encoding squalene epoxidase and lanosterol synthase in prokaryotes by establishing the enzyme activities. The evolutionary aspect of prokaryotic squalene epoxidase and lanosterol synthase is discussed.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom