Identification of Four Major Hornet Silk Genes with a Complex of Alanine-Rich and Serine-Rich Sequences inVespa simillima xanthopteraCameron
Author(s) -
Hideki Sezutsu,
Hideyuki Kajiwara,
Katsura Kojima,
Kazuei Mita,
Toshiki Tamura,
Yasushi Tamada,
Tsunenori Kameda
Publication year - 2007
Publication title -
bioscience biotechnology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 116
eISSN - 1347-6947
pISSN - 0916-8451
DOI - 10.1271/bbb.70326
Subject(s) - silk , identification (biology) , serine , alanine , gene , biology , genetics , computational biology , engineering , ecology , amino acid , telecommunications , phosphorylation
Hornet silk, a fibrous protein in the cocoon produced by the larva of the vespa, is composed of four major proteins. In this study, we constructed silk-gland cDNA libraries from larvae of the hornet Vespa simillima xanthoptera Cameron and deduced the full amino acid sequences of the four hornet silk proteins, which were named Vssilk 1-4 in increasing order of molecular size. Portions of the amino acid sequences of the four proteins were confirmed by Matrix-assisted laser desorption/ionization-time of flight/mass spectrometry (MALDI-TOF/MS) and N-terminal protein sequencing. The primary sequences of the four Vssilk proteins (1-4) were highly divergent, but the four proteins had some common properties: (i) the amino acid compositions of all four proteins were similar to each other in that the well-defined and characteristic repetitive patterns present in most of the known silk proteins were absent; and (ii) the characteristics of the amino acid sequences of the four proteins were also similar in that Ser-rich structures such as sericin were localized at both ends of the chains and Ala-rich structures such as fibroin were found in the center. These characteristic primary structures might be responsible for the coexisting alpha-helix and beta-sheet conformations that make up the unique secondary structure of hornet silk proteins in the native state. Because heptad repeat sequences of hydrophobic residue are present in the Ala-rich region, we believe that the Ala-rich region of hornet silk predominantly forms a coiled coil with an alpha-helix conformation.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom