Facile Preparation of Deuterium-Labeled Standards of Indole-3-Acetic Acid (IAA) and Its Metabolites to Quantitatively Analyze the Disposition of Exogenous IAA inArabidopsis thaliana
Author(s) -
Kenji Kai,
Shunsuke Nakamura,
K. Wakasa,
Hisashi Miyagawa
Publication year - 2007
Publication title -
bioscience biotechnology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 116
eISSN - 1347-6947
pISSN - 0916-8451
DOI - 10.1271/bbb.70151
Subject(s) - chemistry , arabidopsis , arabidopsis thaliana , indole 3 acetic acid , deuterium , acetic acid , tandem mass spectrometry , hydrogen–deuterium exchange , indole test , mass spectrometry , electrospray ionization , chromatography , metabolite , biochemistry , metabolic pathway , stereochemistry , metabolism , auxin , gene , physics , quantum mechanics , mutant
[2',2'-(2)H(2)]-indole-3-acetic acid ([2',2'-(2)H(2)]IAA) was prepared in an easy and efficient manner involving base-catalyzed hydrogen/deuterium exchange. 1-O-([2',2'-(2)H(2)]-indole-3-acetyl)-beta-D-glucopyranose, [2',2'-(2)H(2)]-2-oxoindole-3-acetic acid, and 1-O-([2',2'-(2)H(2)]-2-oxoindole-3-acetyl)-beta-D-glucopyranose were also successfully synthesized from deuterated IAA, and effectively utilized as internal standards in the quantitative analysis of IAA and its metabolites in Arabidopsis thaliana by using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS). The use of this technique shows that these metabolites were accumulated in the roots of Arabidopsis seedlings. Dynamic changes in the metabolites of IAA were observed in response to exogenous IAA, revealing that each metabolic action was regulated differently to contribute to the IAA homeostasis in Arabidopsis.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom