An Efficient Conversion of Carboxylic Acids to One-Carbon Degraded Aldehydesvia2-Hydroperoxy Acids
Author(s) -
Yoshihiko Akakabe,
Takeshi NYUUGAKU
Publication year - 2007
Publication title -
bioscience biotechnology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 116
eISSN - 1347-6947
pISSN - 0916-8451
DOI - 10.1271/bbb.70105
Subject(s) - lithium diisopropylamide , chemistry , aldehyde , carbon atom , carboxylic acid , carbon fibers , lithium (medication) , organic chemistry , ion , catalysis , materials science , ring (chemistry) , medicine , composite number , deprotonation , composite material , endocrinology
After the formation of dianions of a carboxylic acid with lithium diisopropylamide, oxygen was bubbled into the solution to produce 2-hydroperoxy acid. Then the reaction mixture was acidified with a 2 N HCl solution and subsequently elevated to 50 degrees C to afford the aldehyde with the loss of one carbon atom. Even saturated (C(10)-C(20)) and unsaturated (C(18:1)) carboxylic acids were converted into the odd aldehydes (C(9)-C(19), C(17:1)) in high yields. This conversion was found to be an efficient method for the preparation of carboxylic acids (Cn) to one-carbon degraded aldehydes (Cn-1) via 2-hydroperoxy acids.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom