z-logo
open-access-imgOpen Access
Mammalian Glycerophosphodiester Phosphodiesterases
Author(s) -
Noriyuki Yanaka
Publication year - 2007
Publication title -
bioscience biotechnology and biochemistry
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 116
eISSN - 1347-6947
pISSN - 0916-8451
DOI - 10.1271/bbb.70062
Subject(s) - phosphodiesterase , microbiology and biotechnology , biology , regulator , retinoic acid , biochemistry , gene , enzyme
Bacterial glycerophosphodiester phosphodiesterases (GP-PDEs), GlpQ and UgpQ, are well-characterized periplasmic and cytosolic proteins that play critical roles in the hydrolysis of deacylated glycerophospholipids to glycerol phosphate and alcohol, which are utilized as major sources of carbon and phosphate. In contrast, two novel mammalian GP-PDEs, GDE1/MIR16 and GDE3, were recently identified, and were shown to be involved in several physiological functions. GDE1/MIR16 was identified as a membrane protein interacting with RGS16, a regulator of G protein signaling, and found to hydrolyze glycerophosphoinositol preferentially. We have found that expression of GDE3 is significantly up-regulated during osteoblast differentiation and is involved in morphological changes of cells. Furthermore, five mammalian GP-PDEs were virtually identified, and very recent studies indicate that retinoic acid-induced expression of GDE2 plays essential roles in neuronal differentiation and neurite outgrowth. Thus mammalian GP-PDEs are likely to be important in controlling numerous cellular events, indicating that the GP-PDE superfamily in mammals might be a pharmacological target in the future.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom