Enzymatic Production of Highly Soluble Myricitrin Glycosides Using β-Galactosidase
Author(s) -
Ryosuke Shimizu,
Hiroshi Shimabayashi,
Masamitsu Moriwaki
Publication year - 2006
Publication title -
bioscience biotechnology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 116
eISSN - 1347-6947
pISSN - 0916-8451
DOI - 10.1271/bbb.70.940
Subject(s) - chemistry , galactosides , bacillus circulans , glycoside , chromatography , lactose , biochemistry , enzyme , organic chemistry
Myricitrin, a botanical flavonol glycoside, could be a useful ingredient of functional foods, cosmetics, and medicines because of its high anti-oxidative activity. However, due to its insolubility in water, it has a limited range of use. To improve this solubility, we glycosylated myricitrin by an enzymatic transglycosylate reaction. Myricitrin was galactosylated by beta-galactosidase from Bacillus circulans using lactose as a sugar donor. The reaction product was 480 times more soluble than myricitrin. Four myricitrin galactosides were isolated from the reaction products by column chromatography, and their molecular structures were identified by using ESI-MS, 1H-NMR, 13C-NMR, 1H-1H COSY, 1H-13C HMQC and 1H-13C HMBC analysis. The solubility of these four myricitrin galactosides was more than 3.9 x 10(3) fold that of myricitrin, and each had similar anti-oxidative activity to that of myricitrin.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom