z-logo
open-access-imgOpen Access
Purification and Characterization of a Cl-Activated Aminopeptidase from Bovine Skeletal Muscle
Author(s) -
Koshiro Migita,
Toshihide Nishimura
Publication year - 2006
Publication title -
bioscience biotechnology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 116
eISSN - 1347-6947
pISSN - 0916-8451
DOI - 10.1271/bbb.70.1110
Subject(s) - aminopeptidase , chemistry , chromatography , enzyme , biochemistry , amino acid , molecular mass , pmsf , serine , affinity chromatography , enzyme assay , protease , hydrolysis , sepharose , serine protease , skeletal muscle , phenylmethylsulfonyl fluoride , taurine , leucine , biology , endocrinology
To elucidate the mechanisms involved in the increase in free amino acids during postmortem storage of meat, a novel aminopeptidase was purified from bovine skeletal muscle by ammonium sulfate fractionation and successive chromatographies such as DEAE-cellulose, Sephacryl S-200, Hydroxyapatite, Phenyl-Sepharose, and Hi-Trap affinity column chromatography. The molecular mass of the enzyme was found to be 58 kDa on SDS-PAGE. This enzyme had optimum pH at around 7.5, and preferably hydrolyzed Ala-beta-naphthylamide (-NA) in amino acid-NAs. The activity was strongly inhibited by phenylmethansulfonyl fluoride (PMSF) and bestatin, suggesting that it is to be classified as a serine protease. Moreover, the activity was enhanced by chloride and nitrate ions, which is the most remarkable property of this enzyme. The enzyme appeared to be involved in the increase in free amino acids during postmortem storage of meat.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom