z-logo
open-access-imgOpen Access
Disruption of the Availability of Amino Acids Induces a Rapid Reduction of Serine Phosphorylation of Insulin Receptor Substrate-1in Vivoandin Vitro
Author(s) -
Yoichiro Ohne,
Yuka Toyoshima,
H. Kato
Publication year - 2005
Publication title -
bioscience biotechnology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 116
eISSN - 1347-6947
pISSN - 0916-8451
DOI - 10.1271/bbb.69.989
Subject(s) - phosphorylation , insulin receptor , serine , insulin receptor substrate , dephosphorylation , phosphatase , biochemistry , kinase , insulin , amino acid , threonine , tyrosine phosphorylation , irs1 , protein tyrosine phosphatase , signal transduction , biology , tyrosine , endocrinology , insulin resistance
Insulin receptor substrate-1 (IRS-1) plays a pivotal role in insulin signal transduction. It has been shown that the amino acids modulate insulin signaling at the level of IRS-1. Here we show that an amino acid unbalanced diet causes a reduction in serine phosphorylation as well as an elevation in insulin-induced tyrosine phosphorylation of IRS-1 in rat muscle. In fibroblasts and myotube cells, the effect of amino acid deprivation on IRS-1 phosphorylation was evident only when cells were pretreated with reagents causing hyperphosphorylation of serines of IRS-1. But, the target kinases of these reagents were not inactivated by amino acid deprivation, suggesting that amino acid deprivation activates serine/threonine phosphatase(s) of IRS-1. The phosphatases regulated by mammalian target of rapamycin do not appear to participate in the dephosphorylation either. These results suggest that amino acid deprivation dephosphorylates IRS-1 through unidentified serine/threonine phosphatases and thereby potentiates insulin signaling.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom