z-logo
open-access-imgOpen Access
Effect of Partially Hydrolyzed Guar Gum (PHGG) on the Bioaccessibility of Fat and Cholesterol
Author(s) -
Mans Minekus,
Mark JELIER,
Jinzhong Xiao,
Shizuki Kondo,
Keiji Iwatsuki,
Sadayuki Kokubo,
Martin Bos,
B. Dunnewind,
R. Havenaar
Publication year - 2005
Publication title -
bioscience biotechnology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 116
eISSN - 1347-6947
pISSN - 0916-8451
DOI - 10.1271/bbb.69.932
Subject(s) - guar gum , food science , digestion (alchemy) , chemistry , cholesterol , flocculation , sunflower oil , chromatography , biochemistry , organic chemistry
The addition of a compound that lowers the intestinal uptake of fat and cholesterol might be an interesting strategy to reduce the risk of vascular disease. Partially hydrolyzed guar gum (PHGG) has been shown to have this effect in healthy volunteers after intake of a yogurt drink with 3 to 6% PHGG. In the present study a yogurt drink with 3% sunflower oil and 4% egg yolk was tested with 3% and 6% PHGG, and compared to a control without PHGG. Experiments were performed in a multi-compartmental model of the gastrointestinal tract, equipped to study the digestion and availability for absorption (bioaccessibility) of lipids. The results show that PHGG decreases the bioaccessibility of both fat and cholesterol in a dose-dependent manner. The bioaccessibility of fat was 79.4+/-1.7%, 70.8+/-2.5% and 60.1+/-1.1% for the control experiments and the experiments with 3% and 6% PHGG respectively. The bioaccessibility of cholesterol was 82.2+/-2.0%, 75.4+/-1.2% and 64.0+/-4.3% for the control and the experiments with 3% and 6% PHGG respectively. Additional experiments indicated that PHGG reduces bioaccessibility through the depletion flocculation mechanism. Depletion flocculation antagonizes the emulsification by bile salts and thus decreases lipolytic activity, resulting in a lower bioaccessibility of fat and cholesterol. Depletion flocculation with polymers might be an interesting mechanism, not described before, to reduce fat and cholesterol absorption.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom