Increased Expression of Hypothalamic NADPH–Diaphorase Neurons in Mice with Iron Supplement
Author(s) -
MiJa Kim,
Hye Kyung Kim,
JooHo Chung,
Beong Ou Lim,
Kôji Yamada,
Yoongho Lim,
Soon Ah Kang
Publication year - 2005
Publication title -
bioscience biotechnology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 116
eISSN - 1347-6947
pISSN - 0916-8451
DOI - 10.1271/bbb.69.1978
Subject(s) - nitric oxide synthase , endocrinology , medicine , nicotinamide adenine dinucleotide phosphate , diaphorase , hypothalamus , nadph dehydrogenase , nitric oxide , chemistry , appetite , iron deficiency , biology , biochemistry , enzyme , anemia , oxidase test
Iron deficiency is known as the most important nutritional problem in the world. The loss of appetite is a common characteristic of iron deficiency. Iron-containing heme is required as a cofactor for nitric oxide synthase (NOS) which produces nitric oxide (NO). NOS in the central nervous system has been suggested to regulate food intake. Hence, we examined the expression of hypothalamic NOS at various levels of dietary iron. ICR mice (n = 30) were randomly divided into three groups based on the level of dietary iron and fed experimental diets for 4 weeks: the normal-iron diet group (7 mg/kg diet, n = 10), the low-iron diet group (21 mg/kg diet, n = 10) and the high-iron diet group (42 mg/kg diet, n = 10). Expression of NOS in the paraventricular nucleus (PVN) and lateral hypothalamic area (LHA) of hypothalamus was examined by histochemistry for nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-diaphorase). The high-iron diet mice showed significantly higher staining intensity of NADPH-diaphorase-positive neurons in the PVN and LHA than the normal- and low-iron diet mice.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom