RKTS-33, an Epoxycyclohexenone Derivative That Specifically Inhibits Fas Ligand-Dependent Apoptosis in CTL-Mediated Cytotoxicity
Author(s) -
Tomokazu Mitsui,
Yasunobu Miyake,
Hideaki Kakeya,
Yujiro Hayashi,
Hiroyuki Osada,
Takao Kataoka
Publication year - 2005
Publication title -
bioscience biotechnology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 116
eISSN - 1347-6947
pISSN - 0916-8451
DOI - 10.1271/bbb.69.1923
Subject(s) - fas ligand , perforin , ctl* , cytotoxic t cell , apoptosis , cytotoxicity , cd8 , biology , microbiology and biotechnology , chemistry , programmed cell death , immunology , biochemistry , immune system , in vitro
Cytotoxic T lymphocytes (CTLs) eliminate virus-infected cells and tumor cells by two distinct killing pathways, mediated by lytic granules containing perforin and by Fas ligand (FasL). ECH [(2R,3R,4S)-2,3-epoxy-4-hydroxy-5-hydroxymethyl-6-(1E)-propenyl-cyclohex-5-en-1-one] has been shown to inhibit FasL-dependent apoptosis or the killing pathway in short-term culture. However, since ECH exhibited cell toxicity in long-term culture, we attempted the synthesis of less toxic epoxycyclohexenone derivatives. In the present study, we found that RKTS-33 [(2R,3R,4S)-2,3-epoxy-4-hydroxy-5-hydroxymethyl-cyclohex-5-en-1-one] has cell toxicity lower than ECH in long-term culture, and further investigated the inhibitory effect of RKTS-33 on CTL-mediated killing pathways. RKTS-33 did not affect cell-surface expression of FasL upon CD3 stimulation, but profoundly inhibited the FasL-dependent killing pathway mediated by CD4+ and CD8+ CTLs, indicating that RKTS-33 specifically blocks target cell apoptosis but not CTL function. By contrast, RKTS-33 did not affect the perforin-dependent killing pathway in CD8+ CTLs. These results indicate that RKTS-33 is a specific inhibitor of the FasL-dependent killing pathway in CTL-mediated cytotoxicity.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom