z-logo
open-access-imgOpen Access
Cytochrome P450 Homolog Is Responsible for C–N Bond Formation between Aglycone and Deoxysugar in the Staurosporine Biosynthesis ofStreptomycessp. TP-A0274
Author(s) -
Hiroyasu Onaka,
Shumpei Asamizu,
Yasuhiro Igarashi,
Ryuji Yoshida,
TAMOTSU FURUMAI
Publication year - 2005
Publication title -
bioscience biotechnology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 116
eISSN - 1347-6947
pISSN - 0916-8451
DOI - 10.1271/bbb.69.1753
Subject(s) - aglycone , staurosporine , cytochrome p450 , biosynthesis , gene cluster , cytochrome c , stereochemistry , chemistry , biochemistry , enzyme , gene , apoptosis , protein kinase c , glycoside
The staurosporine biosynthetic gene cluster in Streptomyces sp. TP-A0274 consists of 15 sta genes. In the cluster, it was predicted that staN, which shows high similarity to cytochrome P450 is involved in C-N bond formation between the nitrogen at N-12 of aglycone and the carbon at C-5' of deoxysugar. The staN disruptant produced holyrine A instead of staurosporine. The structure of holyrine A is aglycone linking to 2,3,6-trideoxy-3-aminoaldohexose between N-13 and C-1' of deoxysugar. Holyrine A was converted to staurosporine by the staD disruptant. These results indicate that StaN, cytochrome P450 is responsible for C-N bond formation. This is the first example of C-N bond formation catalyzed by cytochrome P450. In addition, holyrine A was confirmed to be an intermediate of staurosporine biosynthesis, which suggests that the N- and O-methylation at C-3' and C-4' takes place after the formation of the C-N bond between C-5' and N-12 in the biosynthetic pathway.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom