Function of the Family-9 and Family-22 Carbohydrate-Binding Modules in a Modular β-1,3-1,4-Glucanase/Xylanase Derived fromClostridium stercorariumXyn10B
Author(s) -
Guangshan Zhao,
Ehsan Ali,
Rie Araki,
Makiko Sakka,
Tetsuya Kimura,
Kazuo Sakka
Publication year - 2005
Publication title -
bioscience biotechnology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 116
eISSN - 1347-6947
pISSN - 0916-8451
DOI - 10.1271/bbb.69.1562
Subject(s) - carbohydrate binding module , xylanase , xylan , enzyme , glycoside hydrolase , biochemistry , chemistry
Clostridium stercorarium Xyn10B having hydrolytic activities on xylan and beta-1,3-1,4-glucan is a modular enzyme composed of two family-22 carbohydrate-binding modules (CBMs), a family-10 catalytic module of the glycoside hydrolases, a family-9 CBM, and two S-layer homologous modules, consecutively from the N-terminus. We investigated the function of family-9 and family-22 CBMs in a modular enzyme by comparing the enzymatic properties of a truncated enzyme composed of two family-22 CBMs and the catalytic module (rCBM22-CM), an enzyme composed of the catalytic module and family-9 CBM (rCM-CBM9), an enzyme composed of two family-22 CBMs, the catalytic module, and family-9 CBM (rCBM22-CM-CBM9), and the catalytic module polypeptide (rCM). Although the addition of family-9 CBM to rCM and rCBM22-CM did not significantly change catalytic activity toward xylan and beta-1,3-1,4-glucan, the addition of family-22 CBM to rCM and rCM-CBM9 drastically enhanced catalytic activity toward xylan and especially beta-1,3-1,4-glucan. Furthermore, the addition of family-22 CBM to rCM and rCM-CBM9 shifted the optimum temperature from 65 degrees C to 75 degrees C, but that of family-9 CBM to rCM and rCBM22-CM did not affect the optimum temperature. These facts suggest that the enzyme properties of Xyn10B were mainly dependent on the presence of the family-22 CBMs but not family-9 CBM.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom