z-logo
open-access-imgOpen Access
A Wheat Xylanase Inhibitor Gene,Xip-I, but NotTaxi-I, Is Significantly Induced by Biotic and Abiotic Signals That Trigger Plant Defense
Author(s) -
Tomoko Igawa,
Takeshi Tokai,
Toshiaki Kudo,
Isamu Yamaguchi,
Makoto Kimura
Publication year - 2005
Publication title -
bioscience biotechnology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 116
eISSN - 1347-6947
pISSN - 0916-8451
DOI - 10.1271/bbb.69.1058
Subject(s) - methyl jasmonate , biology , abiotic component , gene , xylanase , plant defense against herbivory , botany , gene expression , fusarium , microbiology and biotechnology , genetics , biochemistry , enzyme , paleontology
XIP-I and TAXI-I are wheat (Triticum aestivum L) grain proteins that inhibit microbial xylanases used in food processing. Although their biochemical properties and structural features were established recently, very little is known about their expression and their family members in wheat plants. To clarify the role of these xylanase inhibitor proteins in plant defense, we examined the expression of the XIP-type genes in response to a variety of biotic and abiotic signals. Although Xip-I was not expressed in flowering spikelets inoculated with Fusarium graminearum, transcription of Xip-I was greatly enhanced in Erysiphe graminis-infected leaves. Thus, unlike Taxi-I, Xip-I is pathogen-inducible, and unlike Taxi-III and Taxi-IV, its expression depends on the type of the pathogen and/or infected tissue. Xip-I was expressed when the leaves were wounded, and its expression was significantly elevated by treatment with methyl jasmonate (MeJA). The different expression profiles of XIP- and TAXI-type genes suggest distinct roles in plant defense.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom