z-logo
open-access-imgOpen Access
Molecular Cloning of a Gene Encoding Endo-β-D-1,4-Glucanase PCE1 fromPhycomyces nitens
Author(s) -
Atsushi Shimonaka,
Yuko Baba,
Jinichiro Koga,
Akitaka Nakane,
Hidetoshi Kubota,
Toshiaki Kono
Publication year - 2004
Publication title -
bioscience biotechnology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 116
eISSN - 1347-6947
pISSN - 0916-8451
DOI - 10.1271/bbb.68.2299
Subject(s) - phycomyces , gene , glucanase , open reading frame , cellulase , molecular cloning , biology , biochemistry , gene family , molecular mass , nucleic acid sequence , peptide sequence , microbiology and biotechnology , gene expression , cellulose , enzyme
We previously cloned three endoglucanase genes, rce1, rce2, and rce3, from Rhizopus oryzae as the first cellulase genes from the subdivision Zygomycota. In this study, an endoglucanase gene, designated a pce1 gene, was cloned by plaque hybridization with the codon usage-optimized rce1 gene as a probe from Phycomyces nitens, a member of the subdivision Zygomycota. The pec1 gene had an open reading frame of 1,038 nucleotides encoding an endoglucanase (PCE1) of 346 amino acid residues. The amino acid sequence deduced from the pce1 gene consisted of a cellulose-binding domain (CBD) at the N terminus and of a catalytic domain belonging to family 45 glycoside hydrolase at the C terminus. PCE1 was purified to apparent homogeneity from the culture supernatant of P. nitens and the molecular mass was found to be 45 kDa. The optimum pH for the CMCase activity of PCE1 was 6.0, and the optimum temperature was 50 degrees C, the lowest among the family 45 endoglucanases.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom