Effect of a Pore-Forming Protein Derived fromFlammulina velutipeson the Caco-2 Intestinal Epithelial Cell Monolayer
Author(s) -
Asako Narai,
Hirohito Watanabe,
Toshihiko Iwanaga,
Noriko Tomita,
Makoto Shimizu
Publication year - 2004
Publication title -
bioscience biotechnology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 116
eISSN - 1347-6947
pISSN - 0916-8451
DOI - 10.1271/bbb.68.2230
Subject(s) - paracellular transport , caco 2 , biophysics , phalloidin , intracellular , chemistry , intestinal epithelium , microbiology and biotechnology , tight junction , epithelium , cell , biology , biochemistry , permeability (electromagnetism) , membrane , cytoskeleton , genetics
We have previously found a transepithelial electrical resistance (TEER)-decreasing protein derived from Flammulina velutipes, which was revealed to be identical to flammutoxin (FTX) that is known as a hemolytic pore-forming protein. This protein induced a rapid decrease in TEER and parallel increase in paracellular permeability in the intestinal epithelial Caco-2 cell monolayer without any cytotoxicity. An immunoblotting analysis revealed that the FTX-induced decrease in TEER was accompanied by the formation of a high-molecular-weight complex on the surface of Caco-2 cells. Intracellular Ca(2+) imaging showed that exposure to FTX caused a rapid Ca(2+) influx. It was observed by electron microscopy that FTX induced swelling of microvilli and expansion of the cellular surface. Staining with fluorescent phalloidin showed a marked change to filamentous actin in the FTX-treated cells. These results suggest that TEER reduction could sensitively detect small membrane pore formation by FTX in the intestinal epithelium which causes a morphological alteration and disruption of the paracellular barrier function.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom