z-logo
open-access-imgOpen Access
Cloning and Expression of a NovelTrichoderma virideLaminarinase AI Gene (lamAI)
Author(s) -
Rika Nobe,
Yoichi Sakakibara,
Kihachiro Ogawa,
Masahito Suiko
Publication year - 2004
Publication title -
bioscience biotechnology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 116
eISSN - 1347-6947
pISSN - 0916-8451
DOI - 10.1271/bbb.68.2111
Subject(s) - trichoderma viride , pichia pastoris , complementary dna , biology , glucanase , trichoderma , biochemistry , yeast , gene , open reading frame , cloning (programming) , microbiology and biotechnology , recombinant dna , peptide sequence , botany , computer science , programming language
The gene lamAI, which encodes a novel laminarinase AI of Trichoderma viride U-1, was cloned using RT-PCR in conjunction with the rapid amplification of cDNA ends (RACE) technique. The open reading frame consisted of 2,277 bp encoding a protein of 759 amino acid residues, including a 32-residue signal prepropeptide. The protein showed 91% sequence similarity to the putative Trichoderma virens beta-1,3-glucanase BGN1, but no significant similarity to fungal beta-1,6-glucanases or beta-1,3-glucanases from other organisms. On 40 h incubation with a solo carbon source, northern analysis revealed that the gene was induced by 0.5% laminaran from Eisenia bicyclis but was not by the same concentration of glucose. The lamAI cDNA was functionally expressed in the methylotrophic yeast Pichia pastoris, resulting in a recombinant enzyme with as high activity against laminaran as native LAMAI. Based on these data, the probable existence of endo-beta-1,3:1,6-glucan hydrolases as a subclass of endo-beta-1,3-glucanases in some mycoparasitic fungi is suggested.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom