Molecular Cloning, Expression, and Functional Characterization of a Cystatin from Pineapple Stem
Author(s) -
Douglas J. H. Shyu,
ChiaLin Chyan,
Jason T. C. Tzen,
WingMing Chou
Publication year - 2004
Publication title -
bioscience biotechnology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 116
eISSN - 1347-6947
pISSN - 0916-8451
DOI - 10.1271/bbb.68.1681
Subject(s) - cloning (programming) , cystatin , computational biology , biology , molecular cloning , characterization (materials science) , stem cell , microbiology and biotechnology , genetics , gene , cystatin c , gene expression , biochemistry , computer science , nanotechnology , materials science , renal function , programming language
A cDNA fragment encoding the cysteine protease inhibitor, cystatin, was cloned from pineapple (Ananas comosus) stem. This clone was constructed in a fusion vector and was easily over-expressed in Escherichia coli; satisfactory over-expression of non-fusion cystatin was achieved after an additional start codon was inserted prior to its coding sequence. Both recombinant cystatins were predominately found in the soluble fraction of the cell extract, and were demonstrated to be functionally active in a reverse zymographic assay. The fusion and non-fusion cystatins were separately purified to homogeneity via a His-tag or papain-coupling affinity column. Effective inhibitory activity against papain was detected with both the fusion and non-fusion cystatins with comparable K(i) values of 1.18 x 10(-10) M and 9.53 x 10(-11) M, respectively. The recombinant cystatins were found to be thermally stable up to 60 degrees C. Inhibition of the endogenous protease activity in minced fish muscle revealed that the recombinant pineapple cystatins might be an adequate stabilizer to prevent protein degradation during industrial food processing.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom