z-logo
open-access-imgOpen Access
Denitrification of Nitrate by the FungusCylindrocarpon tonkinense
Author(s) -
Tomoo Watsuji,
Naoki Takaya,
Akira Nakamura,
Hirofumi Shoun
Publication year - 2003
Publication title -
bioscience biotechnology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 116
eISSN - 1347-6947
pISSN - 0916-8451
DOI - 10.1271/bbb.67.1115
Subject(s) - denitrification , fungus , nitrate , environmental chemistry , chemistry , environmental science , ecology , botany , biology , nitrogen , organic chemistry
The denitrifying fungus Cylindrocarpon tonkinense was thought to be able to denitrify only nitrite (NO2-) but not nitrate (NO3-) to form nitrous oxide (N2O). Here we found, however, that C. tonkinense can denitrify NO3- under certain conditions. Presence of ammonium (NH3+) in addition to NO3- and the use of a fermentable sugar as an electron donor were key conditions for inducing the denitrifying activity. Such induction accompanied a remarkable increase in the intracellular level of the enzyme activities related to NO3- metabolism. These activities contained assimilatory type NADPH (or NADH)-dependent NO3- reductase (aNar), dissimilatory nitrite reductase (dNir), and nitric oxide reductase (P450nor), but did not contain ubiquinol-dependent, dissimilatory NO3- reductase (dNar). The denitrification was inhibited by tungstate, an inhibitor of Nar. These results demonstrated occurrence of a novel type of denitrification in C. tonkinense, in which assimilatory type Nar is possibly involved.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom