Salts and Glycine Increase Reversibility and Decrease Aggregation during Thermal Unfolding of Ribonuclease-A
Author(s) -
Yoshiko Kita,
Tsutomu Arakawa
Publication year - 2002
Publication title -
bioscience biotechnology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 116
eISSN - 1347-6947
pISSN - 0916-8451
DOI - 10.1271/bbb.66.880
Subject(s) - ribonuclease , rnase p , glycine , chemistry , circular dichroism , folding (dsp implementation) , protein aggregation , ammonium sulfate , protein folding , crystallography , biophysics , chromatography , amino acid , biochemistry , rna , biology , electrical engineering , gene , engineering
Ribonuclease-A (RNase-A) has been a model for studying protein folding and unfolding. However, we show here that its unfolding at neutral pH is complicated by aggregation. Circular dichroism thermal scans showed that reversibility of RNase-A after heating is only about 63%. In accordance with this observation, native-polyacrylamide gel electrophoresis of the sample heated at 75 degrees C showed formation of soluble oligomers. Ammonium sulfate at 0.4 M caused about a 3 degrees C higher melting temperature and nearly complete reversibility, while glycine and NaCl at 0.4 M significantly increased reversibility and decreased aggregation without affecting melting temperature. These results demonstrate that aggregation makes thermal unfolding of RNase-A at least partially irreversible and salts and glycine increase reversibility and decrease aggregation.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom