Studies on the Antimicrobial Mechanisms of Capsaicin Using Yeast DNA Microarray
Author(s) -
Sakiko Kurita,
Emiko Kitagawa,
Chang-Hwa Kim,
Yuko Momose,
Hitoshi Iwahashi
Publication year - 2002
Publication title -
bioscience biotechnology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 116
eISSN - 1347-6947
pISSN - 0916-8451
DOI - 10.1271/bbb.66.532
Subject(s) - capsaicin , yeast , gene , biology , dna , antimicrobial , microarray , microarray analysis techniques , genetics , biochemistry , gene expression , microbiology and biotechnology , receptor
Capsaicin is a pungent element in a variety of red peppers that are widely used as food additives and considered to be an antimicrobial factor. For our tests, we used yeast DNA micro-array methods to understand the mechanisms of inhibitory effects of capsaicin. The capsaicin treatment significantly induced 39 genes from approximately 6,000 genes. These induced genes were classified as multi-drug resistance transporter genes, membrane biosynthesis genes, genes encoding stress proteins, and uncharacterized genes. The growth abilities of the strains with the deletion of the induced genes suggest that capsaicin is pumped out of the yeast cells by the PDR5 transporter.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom