z-logo
open-access-imgOpen Access
A Novel Synthesis of Branched High-molecular-weight (C40+) Long-chain Alkanes
Author(s) -
HansJoachim Lehmler,
Robert G. Bergosh,
Mark S. Meier,
Robert M. K. Carlson
Publication year - 2002
Publication title -
bioscience biotechnology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 116
eISSN - 1347-6947
pISSN - 0916-8451
DOI - 10.1271/bbb.66.523
Subject(s) - alkane , chain (unit) , alkylation , chemistry , long chain , solubility , hydrocarbon , organic chemistry , gas chromatography , carbon chain , catalysis , chromatography , polymer science , physics , astronomy
Many biological and geochemical questions remain concerning the structures, functions, and properties of naturally occurring high-molecular-weight (C40+) alkanes with various mid-chain alkylation patterns. Above C40, these alkanes are exceedingly difficult to separate and purify, and syntheses can be blocked by the low solubility of intermediates. To overcome these problems, a facile three-step synthesis employing the alkylation of 1,3-dithiane with a suitable alpha,omega-dibromoalkane was developed. Bisalkylation of the bis(dithianyl)alkane intermediate with the appropriate 1-bromoalkane and subsequent desulfurization with Raney nickel furnished the desired long-chain alkane. Long-chain alkanes modified at mid-chain and/or symmetrically near the chain termini (or unmodified, i.e., long-chain n-paraffins) are accessible by the selection of appropriate bromoalkanes. Nine mid-chain methylated (C38H78 to C53H108), one symmetrical terminal-chain dimethylated (C40H82), and four linear (C44H90 to C58H118) long-chain alkanes were synthesized by using this approach. High-temperature gas chromatography (HTGC) was found to have important advantages for evaluating the purity of the synthetic high-molecular-weight alkanes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom