z-logo
open-access-imgOpen Access
Antimutagenicity of Mono-, Di-, and Tricaffeoylquinic Acid Derivatives Isolated from Sweetpotato (Ipomoea batatasL.) Leaf
Author(s) -
Makoto Yoshimoto,
Shoji Yahara,
Shigenori Okuno,
Md. Shahidul Islam,
Koji Ishiguro,
Osamu Yamakawa
Publication year - 2002
Publication title -
bioscience biotechnology and biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 116
eISSN - 1347-6947
pISSN - 0916-8451
DOI - 10.1271/bbb.66.2336
Subject(s) - chlorogenic acid , ipomoea , quinic acid , caffeic acid , polyphenol , convolvulaceae , chemistry , food science , antimutagen , biology , botany , biochemistry , antioxidant , mutagen , dna
The caffeoylquinic acid derivatives, 3-mono-O-caffeoylquinic acid (chlorogenic acid, ChA), 3,4-di-O-caffeoylquinic acid (3,4-diCQA), 3,5-di-O-caffeoylquinic acid (3,5-diCQA), 4,5-di-O-caffeoylquinic acid (4,5-diCQA) and 3,4,5-tri-O-caffeoylquinic acid (3,4,5-triCQA), and caffeic acid (CA) were isolated from the sweetpotato (Ipomoea batatas L.) leaf. We examined the antimutagenicity of these caffeoylquinic acid compounds to promote new uses of the sweetpotato leaf. These caffeoylquinic acid derivatives effectively inhibited the reverse mutation induced by Trp-P-1 on Salmonella typhimurium TA 98. The antimutagenicity of these derivatives was 3,4,5-triCQA > 3,4-diCQA = 3,5-diCQA = 4,5-diCQA > ChA in this order. There was no difference in the antimutagenicity of all dicaffeoylquinic acid derivatives. A comparison of the activities and structures of these compounds suggested that the number of caffeoyl groups bound to quinic acid played a role in the antimutagenicity of the caffeoylquinic acid derivatives. The sweetpotato leaves contained distinctive polyphenolic components with a high content of mono-, di-, and tricaffeoylquinic acid derivatives and could be a source of physiological functions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom